Math 143 Sample Problems for Exam 2

Question 1 Find the interval of convergence of the power series:

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(3 x+1)^{n}}{4^{2 n}(n+1)}
$$

Don't forget to check the endpoints!
Question 2 Approximate the definite integral $\int_{0}^{1} x \cos \left(3 x^{3}\right) d x$ by using the first three non-zero terms of the Maclaurin series for $f(x)=x \cos \left(3 x^{3}\right)$. What is the maximum error in your approximation? You will need to know that $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$.

Question 3 Find the Taylor series for $f(x)=\cos x$ centered at the point $x=\pi / 4$.
Question 4 For the parametric curve $x=e^{t}(\cos t+\sin t), y=e^{t}(\cos t-\sin t)$, find the equation of the tangent line at the point where $t=\pi / 4$. Find the length of the curve from $t=0$ to $t=\pi / 2$. Set up, but do not evaluate an integral that represents the area of the surface of revolution gotten by rotating the curve from $t=0$ to $t=\pi / 2$ about the y-axis.

Question 5 Find the area enclosed by the cardioid $r=2+2 \cos \theta$. Find the equation of the tangent line to the cardioid at the point when $\theta=\pi / 6$.

Question 6 Find the length of the spiral $r=3^{-\theta}$ from $\theta=-\pi / 2$ to $\theta=\pi / 2$.
Question 7 Find the equation of the sphere whose diameter has endpoints $(1,2,3)$ and $(-1,4,-6)$.
Question 8 Something from sections 13.2.

